Willett and Raskutti Build Better Tools for Big Data

In the era of Big Data, researchers like electrical and computer engineer Rebecca Willett and statistics professor Garvesh Raskutti, both part of the Institute for Foundations of Data Science at the University of Wisconsin-Madison, are developing new methods and tools to make sense of how discreet events can influence the occurrence of other events over time.

Advances in Nonconvex Optimization Impact Data Analysis

Algorithmic tools from optimization have had become more and more important in machine learning and data analysis over the past 15 years. For much of this time, the focus has been on tools from convex optimization. The best known problems in data analysis (such as kernel learning, linear regression and …